Speaker
Details

Lincoln D. Carr,Colorado School of Mines
Abstract: The application of graph theory to networks has resulted in a myriad of classical applications across biology, economics, epidemiology, sociology, and soft condensed matter physics. Recent quantum information devices allow us access to large, complex quantum states with non-trivial entanglement structure. In this talk, I will use three case studies to show the ease and usefulness of complex network theory in identifying novel features of known quantum systems and new kinds of quantum states accessible in noisy intermediate-scale quantum (NISQ) scenarios.
Bio: Lincoln D. Carr received his B.A. from the University of California, Berkeley, and his M.S. and Ph.D. in Physics from the University of Washington, Seattle. He is an IEEE Senior Member, a Fellow of the American Physical Society, a Kavli Fellow and a Jefferson Science Fellow of the National Academies of Sciences, Engineering, and Medicine, an Alexander von Humboldt Fellow, a National Science Foundation Distinguished International Fellow, and an Embassy Science Fellow of the U.S. Department of State. He is an Honors Faculty Fellow and Payne Institute for Public Policy Fellow at the Colorado School of Mines, where he is a Professor in the Quantum Engineering Program and the Physics Department. His research brings together complexity theory, quantum information science and engineering, education, condensed-matter physics, atomic, molecular, and optical physics, nonlinear dynamics, computational physics, and applied mathematics, pushing the frontiers of complexity theory in the quantum world. He has taught for over 30 years in science and engineering, social sciences, and the humanities on topics ranging from quantum physics and engineering to revolutions in science, literature, and society to science and engineering diplomacy.
References:
- Marc Andrew Valdez, Daniel Jaschke, David L. Vargas and Lincoln D. Carr, “Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks,” Phys. Rev. Lett., v. 119, p. 225301 (2017)
- Bhuvanesh Sundar, Marc Andrew Valdez, Lincoln D. Carr, and Kaden R. A. Hazzard, “A complex network description of thermal quantum states in the Ising spin chain,” Phys. Rev. A, v. 97, p. 052320 (2018)
- Bhuvanesh Sundar, Mattia Walschaers, Valentina Parigi, and Lincoln D Carr, “Response of quantum spin networks to attacks,” J. Phys. Complexity, v.2, p. 035008 (2021)
- LE Hillberry, MT Jones, DL Vargas, P Rall, N Yunger Halpern, N Bao, S Notarnicola, S Montangero, LD Carr, “Entangled quantum cellular automata, physical complexity, and Goldilocks rules,” Quantum Science and Technology, v. 6, p. 045017 (2021)
- EB Jones, LE Hillberry, MT Jones, M Fasihi, P Roushan, Z Jiang, A Ho, C Neill, E Ostby, P Graf, E Kapit, and LD Carr, “Small-world complex network generation on a digital quantum processor,” Nature Communications v. 13, p. 4483 (2022)
- Mattia Walschaers, Nicholas Treps, Bhuvanesh Sundar, Lincoln D Carr, and Valentina Parigi, “Emergent complex quantum networks in continuous-variables non-Gaussian states,” Quantum Science and Technology, v. 8, p. 035009 (2023)
- LE Hillberry, M Fasihi, L Piroli, N Yunger Halpern, T Prosen, and LD Carr, “Classical simulability, thermodynamics, and integrability of Goldilocks quantum cellular automata,” Phys. Rev. Lett, under review, arXiv:2404.02994 (2024)